Proteasome inhibition ablates activation of NF-kappa B in myocardial reperfusion and reduces reperfusion injury.

نویسندگان

  • Joseph Pye
  • Farhad Ardeshirpour
  • Arlene McCain
  • Dwight A Bellinger
  • Elizabeth Merricks
  • Julian Adams
  • Peter J Elliott
  • Christine Pien
  • Thomas H Fischer
  • Albert S Baldwin
  • Timothy C Nichols
چکیده

Both acute coronary occlusion and reperfusion of an infarct-related artery lead to significant myocardial cell death. Recent evidence has been presented that activation of the transcription factor nuclear factor-kappaB (NF-kappaB) plays a critical role in reperfusion injury. NF-kappaB is usually bound to its inhibitor, IkappaB, and classic activation of NF-kappaB occurs when the 20S proteasome degrades IkappaB that has been phosphorylated and ubiquitinated. In this study, activation of NF-kappaB was inhibited by systemic administration of a 20S proteasome inhibitor (PS-519) in a porcine model of myocardial reperfusion injury. The experimental protocol induced myocardial ischemia in the distribution of the left anterior descending coronary artery for 1 h with subsequent reperfusion for 3 h. A single systemic treatment with PS-519 reduced 20S proteasome activity; blocked activation of NF-kappaB induced by reperfusion; reduced creatine kinase, creatine kinase-muscle-brain fraction, and troponin I release from the myocardium; preserved regional myocardial function measured by segmental shortening; significantly reduced the size of myocardial infarction; and exhibited no acute toxicity. These data show that myocardial reperfusion injury can be inhibited by using proteasome inhibitors, which likely function through the inhibition of NF-kappaB activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absence of poly(ADP-ribose)polymerase-1 alters nuclear factor-kappa B activation and gene expression of apoptosis regulators after reperfusion injury.

Poly(ADP-ribose) polymerase-1 (PARP-1) is activated in response to DNA injury in eukaryotic cells and has been implicated in cell dysfunction in reperfusion injury. In this study we investigated the role of PARP-1 on apoptosis in early myocardial reperfusion injury. Mice genetically deficient of PARP-1 (PARP-1-/-) and wild-type littermates were subjected to myocardial ischemia and reperfusion. ...

متن کامل

Triptolide attenuates cerebral ischemia and reperfusion injury in rats through the inhibition the nuclear factor kappa B signaling pathway

Inflammation plays critical roles in the acute progression of the pathology of ischemic injury. Previous studies have shown that triptolide interferes with a number of pro-inflammatory mechanisms. In this study, we investigated whether triptolide has protective effects during acute cerebral ischemia/reperfusion (I/R) injury. Male Sprague Dawley rats received triptolide or vehicle at the onset o...

متن کامل

The effects of adenosine injection after of brain ischemia reperfusion injury on gene expression of NF-kB/p65 and activity level of ROS in male Wistar rats

Background: Unit of p65 is one of the subunits of NF-κB and its phosphorylation by stress oxidative causes activation of NF-κB. The aim of present study was to investigate the effects of adenosine injection after brain ischemia reperfusion injury on gene expression of NF-κB /p65 and Reactive Oxygen Species (ROS) in hippocampus tissue of male wistar rats. Methods: 40 male wistar rats were rando...

متن کامل

Melatonin Protective Effects against Liver Ischemia/Reperfusion Injury

Hepatic ischemia-reperfusion (I/R) is a common phenomenon during liver surgery, transplantation, infection and trauma which results in damage and necrosis of the hepatic tissue through different pathways. Mechanisms involved in I/R damage are very intricate and cover several aspects. Several factors are involved in I/R-induced damages; briefly, decrease in sinusoidal perfusion and ATP generatio...

متن کامل

IKKbeta inhibition attenuates myocardial injury and dysfunction following acute ischemia-reperfusion injury.

Despite years of experimental and clinical research, myocardial ischemia-reperfusion (IR) remains an important cause of cardiac morbidity and mortality. The transcription factor nuclear factor-kappaB (NF-kappaB) has been implicated as a key mediator of reperfusion injury. Activation of NF-kappaB is dependent upon the phosphorylation of its inhibitor, IkappaBalpha, by the specific inhibitory kap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 284 3  شماره 

صفحات  -

تاریخ انتشار 2003